AiDAwie
: 2
bhupdW dw m.s.v.
m.s.v.
qoN Bwv mh`qm smwpvrqk hY [
bhupdW
dw m.s.v.
Awm qor qy AsIN r(x) nUM bhupdW
f(x) Aqy g(x) dw m.s.v. kihMdy hW jykr 1. r(x) f(x) Aqy g(x) dw sWJw guxnKMf hovy [
2. f(x) Aqy g(x) dw hryk sWJw guxnKMf r(x) dw vI guxnKMf hovy [do jW v`D bhupdW dw m.s.v. pqw krn leI Aswn ivDI
pg-1 .
hryk bhupd nUM AKMf guxnKMfW dIAW GwqW
dy rUp ilKo [ ieh zrUrI hovygw ik sMiKAwqmk guxnKMfW nUM vI ABwj sMiKAwvW dI
Gwq dy rUp iv`c iliKAw jwvy [
pg-2
. jy koeI swJW guxnKMf nw hovy qW
m.s.v. 1 huMdw hY [ sWJy AKMf guxnKMf hox dI sUrq iv`c , id`qu gey bhupdW dy
guxnKMfW iv`cON iehnW guxnKMfW dy Coty qON Coty Gwq AMk pqw kro [
pg-
3. sWJy ABwj guxnKMfW nUM pg 2 iv`c
pqw kIqy gey Coty qON Coty Gwq AMkW nwl guxw krky m.s.v. pRwpq kro [
1. (x+1)(x-4)(x+2)2 Aqy (x+1)3(x+2)
h`l – mMn lau f(x)
= (x+1)(x-4)(x+2)2g(x) = (x+1)3(x+2)
f(x) Aqy g(x) dy sWJy AKMfI guxnKMf (x+1) Aqy (x+2) hn Aqy iehnW guxnKMfW dy Coty qON Coty Gwq AMk kRmvwr 1 Aqy 1 hn[
m.s.v. = (x+1) (x+2)
2. f(x) = 8x(x+10)2(x+5) g(x)= 12x2(x+10)
h`l – f(x) = 8x(x+10)2(x+5)
= 2*2*2*x(x+10)2(x+5)
= 23*x(x+10)2(x+5)
g(x)= 12x2(x+10)
= 22*3*x2(x+10)
dovyN bhupdW dy sWJy AKMfI guxnKMf 2,
x Aqy (x+10) hn Aqy iehnW guxnKMfW dy Coty qON Coty Gwq AMk kRmvwr 2,1 Aqy 1 hn [
m.s.v. = 22*x(x+10)
3. f(x) = x2 +3x+2 g(x)= x2 +
6x+8
h`l – f(x)
= x2 +3x+2= x2+2x+2
=x(x+2)+1(x+2)
= (x+2)(x+1)
g(x)= x2 +
6x+8
= x2+2x+4x+8= x(x+2)+4(x+2)
= (x+2)(x+4)
m.s.v. = (x+2)
4.
f(x)= 3(x+3) q(x)= 5(x+3)(x+5) r(x) =( x2- 9)
h`l – f(x)= 3(x+3) q(x)= 5(x+3)(x+5) r(x) =
(x)2- (3)2 (a+b )(a-b) = a2+b2
= (x+3)(x-3)
iqMny
bhupdW iv`c dw sWJw AKMfI guxnKMf (x+3)hY Aqy iehnW guxnKMfW
dw Coty qON Cotw Gwq AMk 1 hY [
m.s.v. = (x+3)
duhrweI leI svwl
m.s.v. pqw kro ;
1. x2(x+1)(x--2)
Aqy x(x+1)2(x+2)2. f(x) = x2-- 5x +6 r(x) = = x2-- 7x +12
3. f(x) = 4x3(x3+27) r(x) = 10x5(x2+6x+9)